Disruption of superlattice phonons by interfacial mixing

نویسندگان

  • Samuel C. Huberman
  • Jason M. Larkin
  • Alan J.H. McGaughey
  • Cristina H. Amon
  • Alan J. H. McGaughey
چکیده

Molecular dynamics simulations and lattice dynamics calculations are used to study the vibrational modes and thermal transport in Lennard-Jones superlattices with perfect and mixed interfaces. The secondary periodicity of the superlattices leads to a vibrational spectrum (i.e., dispersion relation) that is distinct from the bulk spectra of the constituent materials. The mode eigenvectors of the perfect superlattices are found to be good representations of the majority of the modes in the mixed superlattices for up to 20% interfacial mixing, allowing for extraction of phonon frequencies and lifetimes. Using the frequencies and lifetimes, the in-plane and cross-plane thermal conductivities are predicted using a solution of the Boltzmann transport equation (BTE), with agreement found with predictions from the Green-Kubo method for the perfect superlattices. For the mixed superlattices, the Green-Kubo and BTE predictions agree for the cross-plane direction, where thermal conductivity is dominated by low-frequency modes whose eigenvectors are not affected by the mixing. For the in-plane direction, mid-frequency modes that contribute to thermal transport are disrupted by the mixing, leading to an underprediction of thermal conductivity by the BTE. The results highlight the importance of using a dispersion relation that includes the secondary periodicity when predicting phonon properties in perfect superlattices and emphasize the challenges of estimating the effects of disorder on phonon properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Study of the Lattice Thermal Conductivity of Kr/Ar Superlattice Nanowires

The nonequilibrium molecular dynamics (NEMD) method has been used to calculate the lattice thermal conductivities of Ar and Kr/Ar nanostructures in order to study the effects of interface scattering, boundary scattering, and elastic strain on lattice thermal conductivity. Results show that interface scattering poses significant resistance to phonon transport in superlattices and superlattice na...

متن کامل

Heat conduction of single-walled carbon nanotube isotope-superlattice structures: A molecular dynamics study

Heat conduction of single-walled carbon nanotubes (SWNTs) isotope-superlattice is investigated by means of classical molecular dynamics simulations. Superlattice structures were formed by alternately connecting SWNTs with different masses. On varying the superlattice period, the critical value with minimum effective thermal conductivity was identified, where dominant physics switches from zone-...

متن کامل

Corrigendum: Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire

Due to interfacial phonon scattering and nanoscale size effect, silicon/germanium (Si/Ge) superlattice nanowire (SNW) can have very low thermal conductivity, which is very attractive for thermoelectrics. In this paper, we demonstrate using molecular dynamics simulations that the already low thermal conductivity of Si/Ge SNW can be further reduced by introducing hierarchical structure to form Si...

متن کامل

Dynamics of the self-assembly of nanovoids and nanobubbles in solids

Experiments show that vacancies in solids may coalesce into voids and self-organize into a superlattice. The voids have diameters around 10 nm and spacing of tens of nanometers. This paper develops a phase-field model to study this behavior, which incorporates the free energy of mixing, interfacial energy and elastic energy. Vacancy diffusion is described by a Cahn–Hilliard type nonlinear diffu...

متن کامل

Broadband semiconductor superlattice detector for THz radiation

We report on a broadband GaAs/AlAs superlattice detector for THz radiation; a THz field reduces the current through a superlattice, which is carried by miniband electrons, due to modulation of the Bloch oscillations of the miniband electrons. We studied the detector response, by use of a free electron laser, in a large frequency range ~5–12 THz!. The responsivity showed strong minima at frequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015